GLOBO ONLINE

Dever de Casa

E D U C A Ç A O

GABARITO COMENTADO

QUÍMICA

1. Letra B.

0 zinco forma óxido anfótero.
$\mathrm{Ag}_{2} \mathrm{O}=$ Básico
$\mathrm{BaO}_{2}=$ Peróxido
$\mathrm{CdO}=$ Básico

$$
\mathrm{CO}_{2}=\text { Anidrido }
$$

2. Letra C.
$\mathrm{KC} \ell=$ iônico $\quad \mathrm{NaC} \ell=$ iônico
$\mathrm{Na}_{2} \mathrm{O}=$ iônico
$\mathrm{CaO}=$ iônico
3. Letra E .

Todos os compostos são covalentes.
04. Letra D.

Ligações metálicas não são covalentes. São feitas através de íons positivos e elétrons.
05. Letra A.

A água possui PE muito maior que o HF. Possui 2 hidrogênios que permitem fazer 2 vezes mais pontes de hidrogênio.

$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

06. Letra E .
SO_{3} : óxido ácido ou anidrido
(A) Óxido nitroso: $\mathrm{N}_{2} \mathrm{O}$
(B) Óxido cúprico: CuO
(C) Nem sempre são metálicos.
(D) Forma anidrido.
07. Letra A.

```
\(\mathrm{O}_{3} \rightarrow\) apolar \(\left(\vec{\mu}_{1}\right)\)
\(\mathrm{CO}_{2} \rightarrow\) apolar \(\left(\vec{\mu}_{2}\right)\)
    \(3,0,0,5\)
\(\mathrm{C}_{2} \mathrm{O} \rightarrow \operatorname{polar}\left(\overrightarrow{\mu_{3}}\right)(\Delta \mathrm{e}=0,5)\)
    \(2,83,5\)
\(\mathrm{Br}_{2} \mathrm{O} \rightarrow\) polar \(\left(\vec{\mu}_{4}\right)(\Delta \mathrm{e}=0,7)\)
```

8. Letra B.

A e X \rightarrow mesma família.
VIIA VIIIA IA
A B C

gás nobre
A e C \rightarrow composto iônico: CA
09. Letra E.
$\mathrm{I} \rightarrow 2 \mathrm{NaC} \ell+\mathrm{I}_{2}$
$\mathrm{II} \rightarrow \underset{\text { óxido }}{\mathrm{CaO}}+\underset{\text { óxido }}{\mathrm{CO}_{2}^{\nearrow}}$
III $\rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
IV $\rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
ácido
10. Letra A.

0 manganês 6+ forma anidrido: MnO_{3}
11. Letra D.
$d=m / v$
$\mathrm{m}_{\text {elanol }}: 10 \times 0,78=7,8 \mathrm{~g}$
$\mathrm{m}_{\text {agua: }}: 10 \times 1=10 \mathrm{~g}$
n etanol: $7.8 / 46 \cong 0,17$
n água: $10 / 18 \cong 0,56$
$\mathrm{n}_{\mathrm{T}}=0,17+0,56=0,73$
12. Letra A .
$\mathrm{NaOH}\left\{\begin{array}{l}d=1,04 \mathrm{~g} / \mathrm{cm}^{3} \\ 0,946 \mathrm{~mol} / \mathrm{L}\end{array}\right.$
$\left\{0,946 \mathrm{~mol}-1000 \mathrm{~cm}^{3}\right.$
$x=\frac{0,946 \times 50}{10^{3}}$
$\mathrm{x}=0,946 \times 50 \times 10^{-3}$
$M=m / v . m o l$
$\mathrm{m}=\mathrm{MV} \mathrm{mol}$
$m=0,946.50 .40$
13. Letra D .
$20^{\circ} \mathrm{C} \rightarrow 12.5 \mathrm{~g} / 100 \mathrm{~mL}$
$\left\{\begin{array}{rl}12,5 \mathrm{~g}-100 \mathrm{~mL} \\ \mathrm{x}-20 \mathrm{~mL}\end{array} \mathrm{x}=2,5 \mathrm{~g}\right.$ sal
A $\rightarrow 1 \mathrm{~g} \rightarrow$ insaturada
B $\rightarrow 3 \mathrm{~g} \rightarrow$ saturada com depósito
C $\rightarrow 5 \mathrm{~g} \rightarrow$ saturada com depósito
$\mathrm{D} \rightarrow 7 \mathrm{~g} \rightarrow$ saturada com depósito
14. Letra D.

A Lei de Lavoisier é válida para qualquer reação química, mas sua comprovação experimental é verificada em recipientes fechados.
Sistema não fechado:
$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}^{\prime}$
15. Letra A .
$V_{1} M_{1}=V_{2} M_{2}$
$\mathrm{V} .2=0,05.0,2$
$\mathrm{V}=0,005 \mathrm{~L}=5 \mathrm{~mL}$
16. Letra E .
$C=m / v \quad \therefore \quad 1 / 0,25=4 \mathrm{~g} / \mathrm{L}$
$M=C / m o l \quad \therefore \quad 4 / 40=0,1 \mathrm{~mol} / \mathrm{L}$
$0,1 \mathrm{~mol}<0,25 \mathrm{~mol} / \mathrm{L}$
A solução obtida é mais diluída.
17. Letra \mathbf{D}.
$\left\{\begin{array}{c}1,14 \mathrm{~g}-1 \mathrm{~cm}^{3} \\ x-1000 \mathrm{~cm}^{3}\end{array} \quad x=1140 \mathrm{~g}\right.$
a) $\left\{\begin{array}{l}n=m / \mathrm{mol} \therefore 1140 / 98=11,63 \mathrm{~mol} \\ 20 \% \rightarrow 11,63 \times 0,2=2,326 \mathrm{~mol} / \mathrm{L}\end{array}\right.$
b) $\left\{\begin{array}{l}1140 \mathrm{~g} 20 \%=1140 \times 0,2=228 \mathrm{~g} \\ \mathrm{n}=228 / 98=2,326 \mathrm{~mol}\end{array}\right.$
$V_{1} M_{1}=V_{2} M_{2}$
V. $2,326=200.0,2$
$\mathrm{V}=17,19 \mathrm{~mL}$
18. Letra C.
$\mathrm{H}_{2} \mathrm{SO}_{4}\left\{\begin{array}{l}1 \mathrm{~mol}-98 \mathrm{~g} \\ \mathrm{x}-5 \times 10^{12} \mathrm{~g}\end{array}\right.$
$\mathrm{x}=5 \times 10^{10} \mathrm{mols}$
$\mathrm{NH}_{3} \quad\left\{\begin{array}{l}1 \mathrm{~mol}-17 \mathrm{~g} \\ \mathrm{y}-1,2 \times 10^{12} \mathrm{~g}\end{array}\right.$
$\mathrm{y}=7 \times 10^{10} \mathrm{mols}$
$\mathrm{NaOH}\left\{\begin{array}{c}1 \mathrm{~mol}-40 \mathrm{~g} \\ z-10^{12} \mathrm{~g}\end{array}\right.$
$z=2,5 \times 10^{10} \mathrm{mols}$
$\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{SO}_{4}>\mathrm{NaOH}$
19. Letra B.

Cálculo da massa de carbono no CO_{2} :
44 g de CO $2-12 \mathrm{gdeC}$
$2,64 \mathrm{~g} \mathrm{deCO}_{2}-\mathrm{x}$
$\mathrm{x}=0,72 \mathrm{~g} \mathrm{C}^{2}$
Cálculo da massa de hidrogênio na $\mathrm{H}_{2} \mathrm{O}$:
$18 \mathrm{gdeH}_{2} \mathrm{O}-2 \mathrm{gdeH}$
$1,08 \mathrm{gdeH}_{2} \mathrm{O}-\mathrm{y}$
$y=0,12 \mathrm{~g}$
Soma das massas de carbono e hidrogênio no composto x : 0,72 $0,12=0,84 \mathrm{~g}$.
Se a massa do composto xé de $1,16 \mathrm{~g}$ e a soma de carbono e hidrogênio $0,84 \mathrm{~g}$, podemos concluir que o composto x apresenta $0,32 \mathrm{~g}$ de oxigên

Cálculo do número de mols de átomos de carbono, hidrogênio e oxigên
$1 \mathrm{~mol}_{\mathrm{c}}-12 \mathrm{~g}$
$x \quad-\quad 0,7 \mathrm{~g}$
$x=0,06 \mathrm{~mol} \div 0,02=3$

$$
\begin{aligned}
& 1 \mathrm{~mol}_{\mathrm{H}}-1 \mathrm{~g} \\
& \mathrm{y}-0,12 \\
& \mathrm{y}=0,12 \mathrm{~mol} \div 0,02=6 \\
& 1 \mathrm{~mol}_{0}-16 \mathrm{~g} \\
& \mathrm{z}-0,32 \\
& \mathrm{z}=0,02 \mathrm{~mol} \div 0,02=1
\end{aligned}
$$

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
20. Letra B.

A adição de m soluto (não volátil) diminui a pressão de vapor.
Quanto maior o número de mols de soluto adicionado, menor a pressão de vapor.
Logo:
I \rightarrow solvente puro;
II \rightarrow solução mais diluída;
III \rightarrow solução mais concentrada.

