

Dever de Casa

Tecnologia:

GABARITO COMENTADO

QUÍMICA

01. Letra B.

Carbonato de lítio: Li₂CO₃ Em solução aquosa ocorre a seguinte hidrólise: $CO_3^{2-}_{(aq)} + H_2O_{(\ell)} \longrightarrow H_2CO_{3(aq)} + OH^-_{(aq)}$ (hidrólise básica)

02. Letra D.

x $\longrightarrow 10^2$ g da crosta terrestre $x = 2 \cdot 10^{-3} g = 2 mg$

03. Letra E.

- Errada. Catalisador não perturba equilíbrio.
- Errada. O aumento da pressão desloca o equilíbrio no sentido do menor volume de gases.

$$^{1/2}$$
 N_{2(g)} + $^{1/2}$ O_{2(g)} \rightarrow NO(g)
1 Volume 1 Volume

A reação em questão ocorre com manutenção de volume de gases; sendo assim, não há deslocamento de equilíbrio.

- Certa. Observa-se no gráfico que, a 2000 K, o valor da constante Kc é maior; assim, a concentração do produto será maior nessa temperatura.
- Certa. Com o aumento da temperatura, o deslocamento ocorre no sentido endotérmico (produção de NO).

Letra A.

Massa molar da nicotina: 162 g/mol

162g de nicotina - 1 mol de moléculas 650.10⁻⁶ g

 $x \simeq 4 \cdot 10^{-6}$ mol de moléculas de nicotina.

05. Letra E.

Cálculo da massa de ácido clorídrico na solução: 584 g de solução → 100 %

x = 146 g de ácido clorídrico na solução.

Determinação do reagente em excesso: $2 \ HC\ell + Na_2S \longrightarrow H_2S + 2 \ NaC\ell$ 73 g de $HC\ell \longrightarrow 78$ g de Na_2S 146 g de HC $\ell \longrightarrow x$

x = 156 g de Na₂S

Como foram transferidos para o recipiente 195 g de Na, S e apenas 156 g reagem, o reagente está em excesso.

Cálculo da massa, em gramas, de H₂S produzida:

73 g de HC
$$\ell$$
 \longrightarrow 34 g de H $_2$ S
146 g de HC ℓ \longrightarrow x
 $x = 68 g de H $_2$ S$

06. Letra D.

Considerando o monoácido ácido acetilsalicílico (AAS) como HA, temos:

HA
$$\longleftrightarrow$$
 H⁺ + A⁻

$$Ka = \frac{\begin{bmatrix} H^+ \end{bmatrix} \cdot \begin{bmatrix} A^- \end{bmatrix}}{\begin{bmatrix} HA \end{bmatrix}}$$
3. $10^{-5} = 0.8 = \frac{m}{5}$

$$\begin{array}{l} X^2 \,\cong\, 10^{-8} \\ X \,=\, 10^{-4} \,=\, [H^+] \end{array}$$

pH = 4

07. Letra C.

A solubilidade da sacarose em água se deve à formação de ligações de hidrogênio entre as hidroxilas da sacarose e a água. Cálculo do calor de combustão da glicose:

$$\Delta H = [6 \cdot (-394) + 6 \cdot (-286)] - (-1268)$$

 $\Delta H = -2812 \text{ kJ}$

08. Letra B.

Cálculo da massa de etanol em 5 litros:

$$d = \frac{m}{v}$$

$$0.8 = \frac{m}{5}$$

$$0.50 \text{ mol de } l_2 \longrightarrow 1 \text{ kg de etanol}$$

$$x \longrightarrow 4 \text{ kg de etanol}$$

$$x = 2 \text{ mols de } l_2 \longrightarrow 254g$$

$$2 \text{ mols de } l_2 \longrightarrow x$$

$$x = 508 \text{ g}$$

09. Letra E.

Segundo o equilíbrio: 2 $NO_{2(g)} \longleftrightarrow N_2O_{4(g)}$ Castanho Incolor

Conforme o texto, ao se colocar o recipiente em um banho de gelo, o gás se torna incolor, ou seja, o equilíbrio é deslocado para a direita. Assim, podemos concluir que a reação é exotérmica em direção ao N_2O_4 .

- I. Correta
- Correta. Com o aumento da pressão, o equilíbrio é deslocado no sentido do menor volume de gás (sentido incolor, ou seja, a cor castanha é atenuada)
- III. Correta. Ao receber calor, o equilíbrio do sistema é perturbado, deslocando-o no sentido de absorver o calor fornecido (endotérmico que é o sentido da produção de NO,,ou seja, cor castanha acentuada).

10. Letra B.

Menor ponto de ebulição: ${\rm N_2}$ (molécula apolar, ligações intermoleculares mais fracas)

Maior ponto de ebulição: $\rm H_2O$ (molécula polar, apresenta ligações de hidrogênio intermolecular)

11. Letra D.

Os dois líquidos expressos no gráfico são: uma solução de sacarose 1,0 mol/L e água destilada.

Sabendo que a água destilada apresenta menor temperatura de ebulição do que soluções aquosas de solutos não-voláteis, podemos concluir que a curva A representa a água e a curva B a solução de sacarose.

Como a solução C, de $A\ell(NO_3)_3$ é mais concentrada, já que a concentração de íons é igual a 2,0 mol/L, terá o maior ponto de ebulição dentre os três líquidos.

- Errada
- II. Certa
- Errada. Quanto maior a temperatura de ebulição, menor a pressão de vapor.
- IV. Certa.

12. Letra D.

Cálculo do número de mols de EDTA gastos na titulação:

1 .
$$10^{-3}$$
 mol de EDTA \longrightarrow 1 litro \longrightarrow 4 . 10^{-3} litro \longrightarrow 4 . 10^{-6} mol de EDTA.

Como o EDTA reage na proporção de 1:1 com o cobre, temos:

4 .
$$10^{-6}$$
 mol de cobre \longrightarrow 5 . 10^{-3} litro de cachaça y \longrightarrow 1 litro de cachaça y = $8 \cdot 10^{-4}$ mol/L

Como 1 mol de cobre
$$\longrightarrow$$
 63,5g 8 .10⁻⁴ mol \longrightarrow z $z = 50.8$ mg/L \cong 50 mg/L

13. Letra A.

Com o tempo, o gás carbônico $({\rm CO_2})$ contido na garrafa de água com gás sai em direção à garrafa de água sem gás tornando-a ácida, devido à reação abaixo:

$$CO_2 + H_2O \iff H^+ + HCO_3^-$$

14. QUESTÃO ANULADA.

15. Letra D.

A cadeia do antraceno, corresponde a um hidrocarboneto, insaturado, aromático com núcleos condensados.

16. Letra C.

O dióxido de carbono reage com a água de acordo com a reação: CO, + H₂O \rightarrow H₂CO, (ácido carbônico)

Os óxidos de nitrogênio que podem reagir com a água formando ácidos são $\rm N_2O_3$ e $\rm N_2O_5$. E reagem de acordo com as reações abaixo:

$$N_2O_3 + H_2O \rightarrow 2 \ HNO_2$$
 (ácido nitroso)
 $N_2O_5 + H_2O \rightarrow 2 \ HNO_3$ (ácido nítrico)

O trióxido de enxofre reage com a água de acordo com a reação: SO, $+ H_2O \rightarrow H_2SO_4$ (ácido sulfúrico)

17. Letra D.

O equilíbrio em questão não é perturbado por alterações na pressão, já que os volumes de gases são iguais nos dois membros da reação. Como a reação é exotérmica no sentido direto, será favorecido o sentido de formação do HBr se a temperatura for diminuída.

18. Letra D.

A quiralidade existe em compostos orgânicos que apresentam pelo menos um átomo de carbono ligado a quatro ligantes diferentes. Tal átomo de carbono é conhecido como carbono quiral ou assimétrico. O carbono assimétrico só pode ser identificado na vitamina C, conforme a estrutura abaixo:

* Carbono assimétrico

19. Letra A.

O composto em questão tem fórmula $\rm C_{13}H_{18}O_2$, massa molar 206 g/mol, apresenta um carbono assimétrico, não é um hidrocarboneto e apresenta cadeia homocíclica.

20. Letra B.

 $Kw = [H^+]$. $[OH^-]$; na água pura $[H^+] = [OH^-]$, então temos, a 37 °C:

$$\begin{array}{l} 2,5\, \cdot \, 10^{-14}\, =\, x^2 \\ x\, =\, \, \sqrt{2,5}\, \cdot \, 10^{-7} \\ x\, =\, 2,5^{1/2}\, \cdot \, 10^{-7}\, =\, [H^+] \\ pH\, =\, 7\, -\, \log\, 2,5^{1/2} \\ pH\, =\, 7\, -\, (1/2\, \cdot \log\, 2,5) \\ pH\, =\, 6,8 \end{array}$$