GLOBO ONLINE
 Dever de Casa

E DUCACA O

GABARITO COMENTADO

Química

1. Letra B.

Carbonato de lítio: $\mathrm{Li}_{2} \mathrm{CO}_{3}$
Em solução aquosa ocorre a seguinte hidrólise:
$\mathrm{CO}_{3}^{2-}{ }_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}+\mathrm{OH}^{-}{ }_{(\text {aq })}$
(hidrólise básica)
02. Letra D.

20 g de chumbo $\longrightarrow 10^{6} \mathrm{~g}$ da crosta terrestre $\mathrm{x} \quad \longrightarrow 10^{2} \mathrm{~g}$ da crosta terrestre
$x=2 \cdot 10^{-3} g=2 \mathrm{mg}$

03. Letra E.

I. Errada. Catalisador não perturba equilíbrio.
II. Errada. 0 aumento da pressão desloca o equilíbrio no sentido do menor volume de gases.
$1 / 2 \mathrm{~N}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{NO}(\mathrm{g})$
1 Volume 1Volume
A reação em questão ocorre com manutenção de volume de gases; sendo assim, não há deslocamento de equilíbrio.
III. Certa. Observa-se no gráfico que, a 2000 K , o valor da constante Kc é maior; assim, a concentração do produto será maior nessa temperatura.
IV. Certa. Com o aumento da temperatura, o deslocamento ocorre no sentido endotérmico (produção de NO).
04. Letra A.

Massa molar da nicotina: $162 \mathrm{~g} / \mathrm{mol}$
162 g de nicotina $\longrightarrow 1 \mathrm{~mol}$ de moléculas
$650.10^{-6} \mathrm{~g} \longrightarrow \quad \mathrm{X}$
$x \cong 4.10^{-6} \mathrm{~mol}$ de moléculas de nicotina.
05. Letra E.

Cálculo da massa de ácido clorídrico na solução:
584 g de solução $\longrightarrow 100 \%$
$x \quad \longrightarrow 25 \%$
$x=146 \mathrm{~g}$ de ácido clorídrico na solução.
Determinação do reagente em excesso:
$2 \mathrm{HC} \ell+\mathrm{Na}_{2} \mathrm{~S} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{NaC} \ell$
73 g de $\mathrm{HC} \ell \longrightarrow 78 \mathrm{~g}$ de $\mathrm{Na}_{2} \mathrm{~S}$
146 g de $\mathrm{HC} \ell \longrightarrow \mathrm{x}$
$x=156 \mathrm{~g}$ de $\mathrm{Na}_{2} \mathrm{~S}$
Como foram transferidos para o recipiente 195 g de $\mathrm{Na}_{2} \mathrm{~S}$ e apenas 156 g reagem, o reagente está em excesso.

Cálculo da massa, em gramas, de $\mathrm{H}_{2} \mathrm{~S}$ produzida:
73 g de $\mathrm{HC} \ell \longrightarrow 34 \mathrm{~g}$ de $\mathrm{H}_{2} \mathrm{~S}$
146 g de HC $\ell \longrightarrow x$
$x=68 \mathrm{~g}$ de $\mathrm{H}_{2} \mathrm{~S}$
06. Letra D.

Considerando o monoácido ácido acetilsalicílico (AAS) como HA, temos:
$\mathrm{HA} \rightleftarrows \mathrm{H}^{+}+\mathrm{A}^{-}$
$\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right] \cdot\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$3 \cdot 10^{-5}=0,8=\frac{m}{5}$
$X^{2} \cong 10^{-8}$
$X=10^{-4}=\left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=4$
07. Letra C.

A solubilidade da sacarose em água se deve à formação de ligações de hidrogênio entre as hidroxilas da sacarose e a água.
Cálculo do calor de combustão da glicose:

$\Delta H=[6 \cdot(-394)+6 \cdot(-286)]-(-1268)$
$\Delta H=-2812 \mathrm{~kJ}$
08. Letra B.

Cálculo da massa de etanol em 5 litros:
$d=\frac{m}{v}$
$0,8=\frac{\mathrm{m}}{5} \quad \mathrm{~m}=4 \mathrm{~kg}$
$0,50 \mathrm{~mol}$ de $\mathrm{I}_{2} \longrightarrow 1 \mathrm{~kg}$ de etanol
$\mathrm{X} \quad \longrightarrow 4 \mathrm{~kg}$ de etanol
$\mathrm{x}=2 \mathrm{mols}$ de I_{2}
$1 \mathrm{~mol} \mathrm{deI}_{2} \longrightarrow 254 \mathrm{~g}$
2 mols de $\mathrm{I}_{2} \longrightarrow \mathrm{X}$
$\mathrm{x}=508 \mathrm{~g}$
09. Letra E.

Segundo o equilibrio: $2 \mathrm{NO}_{2(\mathrm{~g})} \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
Castanho
Incolor
Conforme o texto, ao se colocar o recipiente em um banho de gelo, o gás se torna incolor, ou seja, o equilíbrio é deslocado para a direita. Assim, podemos concluir que a reação é exotérmica em direção ao $\mathrm{N}_{2} \mathrm{O}_{4}$.
I. Correta
II. Correta. Com o aumento da pressão, o equilíbrio é deslocado no sentido do menor volume de gás (sentido incolor, ou seja, a cor castanha é atenuada)
III. Correta. Ao receber calor, o equilíbrio do sistema é perturbado, deslocando-o no sentido de absorver o calor fornecido (endotérmico que é o sentido da produção de NO_{2}, ou seja, cor castanha acentuada).
10. Letra B.

Menor ponto de ebulição: N_{2} (molécula apolar, ligações intermoleculares mais fracas)
Maior ponto de ebulição: $\mathrm{H}_{2} \mathrm{O}$ (molécula polar, apresenta ligações de hidrogênio intermolecular)
11. Letra D .

Os dois líquidos expressos no gráfico são: uma solução de sacarose $1,0 \mathrm{~mol} / \mathrm{L}$ e água destilada.
Sabendo que a água destilada apresenta menor temperatura de ebulição do que soluções aquosas de solutos não-voláteis, podemos concluir que a curva A representa a água e a curva B a solução de sacarose.
Como a solução C , de $\mathrm{A} \ell\left(\mathrm{NO}_{3}\right)_{3}$ é mais concentrada, já que a concentração de íons é igual a $2,0 \mathrm{~mol} / \mathrm{L}$, terá o maior ponto de ebulição dentre os três líquidos.
I. Errada
II. Certa
III. Errada. Quanto maior a temperatura de ebulição, menor a pressão de vapor.
IV. Certa.
12. Letra D .

Cálculo do número de mols de EDTA gastos na titulação:
$1.10^{-3} \mathrm{~mol}$ de EDTA $\longrightarrow 1$ litro
$x \quad \longrightarrow 4 \cdot 10^{-3}$ litro
$x=4.10^{-6} \mathrm{~mol}$ de EDTA.
Como o EDTA reage na proporção de 1:1 com o cobre, temos:
$4.10^{-6} \mathrm{~mol}$ de cobre $\longrightarrow 5.10^{-3}$ litro de cachaça
$y \quad \longrightarrow 1$ litro de cachaça
$y=8 \cdot 10^{-4} \mathrm{~mol} / \mathrm{L}$
Como 1 mol de cobre $\longrightarrow 63,5 \mathrm{~g}$

$$
8.10^{-4} \mathrm{~mol} \longrightarrow \mathrm{z}
$$

$z=50,8 \mathrm{mg} / \mathrm{L} \cong 50 \mathrm{mg} / \mathrm{L}$

13. Letra A.

Com o tempo, o gás carbônico $\left(\mathrm{CO}_{2}\right)$ contido na garrafa de água com gás sai em direção à garrafa de água sem gás tornando-a ácida, devido à reação abaixo:
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

14. QUESTÃO ANULADA.

15. Letra D.

A cadeia do antraceno, corresponde a um hidrocarboneto, insaturado, aromático com núcleos condensados.
16. Letra C.

0 dióxido de carbono reage com a água de acordo com a reação: $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (ácido carbônico)

Os óxidos de nitrogênio que podem reagir com a água formando ácidos são $\mathrm{N}_{2} \mathrm{O}_{3}$ e $\mathrm{N}_{2} \mathrm{O}_{5}$. E reagem de acordo com as reações abaixo:
$\mathrm{N}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{2}$ (ácido nitroso)
$\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$ (ácido nítrico)

0 trióxido de enxofre reage com a água de acordo com a reação:
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ (ácido sulfúrico)
17. Letra D.

0 equilíbrio em questão não é perturbado por alterações na pressão, já que os volumes de gases são iguais nos dois membros da reação. Como a reação é exotérmica no sentido direto, será favorecido o sentido de formação do HBr se a temperatura for diminuída.
18. Letra D.

A quiralidade existe em compostos orgânicos que apresentam pelo menos um átomo de carbono ligado a quatro ligantes diferentes. Tal átomo de carbono é conhecido como carbono quiral ou assimétrico. 0 carbono assimétrico só pode ser identificado na vitamina C , conforme a estrutura abaixo:

* Carbono assimétrico

19. Letra A .

0 composto em questão tem fórmula $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$, massa molar $206 \mathrm{~g} / \mathrm{mol}$, apresenta um carbono assimétrico, não é um hidrocarboneto e apresenta cadeia homocíclica.
20. Letra B.
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right] .\left[\mathrm{OH}^{-}\right]$; na água pura $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, então temos, a $37^{\circ} \mathrm{C}$:

$$
\begin{aligned}
& 2,5 \cdot 10^{-14}=x^{2} \\
& x=\sqrt{2,5} \cdot 10^{-7} \\
& x=2,5^{1 / 2} \cdot 10^{-7}=\left[H^{+}\right] \\
& \mathrm{pH}=7-\log 2,5^{1 / 2} \\
& \mathrm{pH}=7-(1 / 2 \cdot \log 2,5) \\
& \mathrm{pH}=6,8
\end{aligned}
$$

