

BIOLOGIA

21. No esquema a seguir, representando a respiração celular, os retângulos identificados pelos números 1,2 e 3 devem corresponder às séries metabólicas citadas nas opções. As setas numeradas (4 e 5) indicam as substâncias de alto valor energético, derivadas do metabolismo em causa.

Indique a opção que contém todas as legendas corretas para os próximos números $1,2,3,4$ e 5 , respectivamente:
(A) glicólise, ciclo de Krebs, cadeia respiratória, ATP e NADH;
(B) cadeia respiratória, ciclo de Krebs, glicólise, ATP e NADH;
(C) ciclo de Krebs, cadeia respiratória, glicólise, ATP e NADH;
(D) glicólise, ciclo de Krebs, cadeia respiratória, NADH e ATP;
(E) cadeia respiratória, glicólise, ciclo de Krebs, NADH e ATP.
22. A fabricação de vinho e pão depende de produtos liberados pelas leveduras durante sua atividade fermentativa. Quais os produtos que interessam mais diretamente à fabricação do vinho e do pão, respectivamente?
(A) Álcool etilico, gás carbônico.
(B) Gás carbônico, ácido lático
(C) Ácido acético, ácido lático.
(D) Álcool etilico, ácido acético.
(E) Ácido lático, álcool ettilico.
23. A etapa do processo de respiração celular que ocorre a mitocondrial é:
(A) a transformação de ADP em ATP;
(B) a cadeia respiratória;
(C) a fosforilação oxidativa;
(D) 0 ciclo de Krebs;
(E) a glicólise.
24. Dos organismos abaixo, os que consomem maior quantidade de glicose para sintetizar 100 moléculas de ATP são os:
(A) heterótrofos em geral;
(B) autótrofos em geral;
(C) aeróbios facultativos;
(D) aeróbios estritos;
(E) anaeróbios estritos.
25. Com relação à respiração e à fermentação, pode-se afirmar que:
(A) se obtém glicose por esses processos;
(B) em ambos os processos há formação de ácido pirúvico;
(C) na respiração anaeróbia ocorre participação do oxigênio;
(D) a respiração aeróbia produz menos ATP que a fermentação;
(E) esses processos consomem mais energia do que produzem.
26. O gráfico abaixo mostra a velocidade de fotossíntese (medida $\mathrm{em}^{\mathrm{mm}}{ }^{3}$ de $\mathrm{O}_{2} /$ hora $/ \mathrm{cm}^{2}$ de folhas) de uma planta de Tradescantia, em função da intensidade luminosa. A concentração de dióxido de carbono e a temperatura foram mantidas constantes.

Para aumentar o desprendimento de oxigênio, você deveria:
(A) aumentar a concentração de dióxido de carbono;
(B) aumentar a intensidade luminosa;
(C) diminuir a temperatura;
(D) diminuir a umidade do solo e aumentar a umidade do ar;
(E) aumentar a temperatrura e diminuir a taxa de dióxido de carbono.
27. Algumas sulfobactérias fotossintetizantes utilizam ácido sulfídrico, em vez de água ($\mathrm{H}_{2} \mathrm{O}$), como fonte de elétrons (hidrogênio). Neste tipo de processo fotossintético não ocorre:
(A) liberação de oxigênio molecular (0_{2});
(B) utilização de CO_{2} como fonte de carbono;
(C) formação de carboidratos como produto;
(D) utilização de luz como fonte de energia;
(E) formação de água $\left(\mathrm{H}_{2} \mathrm{O}\right)$ como produto.
28. Analise as reações:
I. Glicose $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ ATP
II. $\mathrm{NADP}+\mathrm{ADP}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NADPH}_{2}+$ ATP $+\mathrm{O}_{2}$
III. $\mathrm{NADPH}_{2}+$ ATP $+\mathrm{CO}_{2} \rightarrow$ glicose + ADP + NADP

A respiração aeróbica, a fase escura da fotossíntese e a fase fotoquímica da fotossíntese estão representadas, respectivamente, em:
(A) III, II, I
(B) I, III, II
(C) III, I, II
(D) I, II, III
(E) II, III, I
29. A equação abaixo é uma generalização do processo da fotossíntese:

$$
\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{~A} \rightarrow\left(\mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n}}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{~A}
$$

Sobre esse processo são feitas as seguintes afirmações:
I. Se $\mathrm{H}_{2} \mathrm{~A}$ for a água, esse composto será a fonte exclusiva da liberação de O_{2}.
II. A fase escura desse processo ocorre a nível de hialoplasma.
III. A substância $\mathrm{H}_{2} A$ pode funcionar como fonte de elétrons.
IV. Na fase do processo chamada fotoquímica, a clorofila absorve energia química.

São corretas as seguintes afirmações:
(A) apenas I e III;
(B) apenas II e III;
(C) apenas I, II e IV;
(D) apenas II, III e IV;
(E) todas.
30. No interior dos cloroplastos são encontradas pequenas quantidades de DNA, RNA e ribossomos. Tais componentes permitem que os cloroplastos sejam capazes de realizar:
(A) fluorescência e síntese lipídica;
(B) fotossíntese e secreção celular;
(C) autoduplicação e síntese protéica;
(D) ciclo de Krebs e síntese de ATP;
(E) fermentação anaeróbica e síntese de clorofila.
31. Considere as seguintes etapas da digestão:
I. absorção de nutrientes;
II. adição de ácido clorídrico ao suco digestivo;
III. início da digestão das proténas;
IV. adição da bile e do suco pancreático ao suco digestivo;
V. início da digestão do amido.

Dentre esses processos, ocorrem no intestino delgado apenas:
(A) Ie IV;
(B) I e III;
(C) II e III;
(D) II e IV;
(E) III e V.
32. A massa alimentar, formada pelas substâncias que serão absorvidas a nível intestinal, é constituída de:
(A) proteínas, lipídios, aminoácidos e água;
(B) monossacarídeos, água, aminoácidos e ácidos graxos;
(C) água, aminoácidos, glicose e proteínas;
(D) lipídios, aminoácidos, água e dissacarídeos;
(E) aminoácidos, glicerol, água e dissacarídeos.
33. O aparelho digestivo de aves e ruminantes apresenta uma porção onde ocorre a degradação enzimática dos alimentos. Esta porção corresponde, respectivamente, a:
(A) moela/abomaso;
(B) moela/rúmen;
(C) proventrículo/abomaso;
(D) proventrículo/retículo;
(E) papo/rúmen.
34. Realizou-se um experimento com quatro tubos de ensaio. Colocou-se:
tubo I: ptialina + amido;
tubo II: ptialina + sacarose;
tubo III: pepsina + manteiga;
tubo IV: pepsina + carne + HC ℓ.
Deve-se observar digestão somente nos tubos:
(A) Ie ll ;
(B) I e III;
(C) le IV;
(D) II e III;
(E) II e IV.
35. Sobre a digestão humana, pode-se afirmar que:
I. 0 ácido clorídrico do suco gástrico tornou o pH ideal para digestão das proteínas e tem função antisséptica;
II. a digestão do amido ocorre principalmente no estômago;
III. a ativação do tripsinogênio em tripsina ocorre no intestino e é feita pela enteroquinase;
IV. o muco produzido pelo epitélio do tubo digestivo é o responsável pela digestão dos lipídios.

Assinale a opção que contém afirmativas corretas:
(A) I e III;
(B) I e If;
(C) II e III;
(D) II e IV;
(E) III e IV.
36. Com relação à pequena circulação, podemos afirmar que:
(A) o sangue arterial sai do átrio, vai aos pulmões e volta para 0 átrio esquerdo, saindo para todo o corpo, pela aorta;
(B) o sangue venoso sai do ventrículo direito pela artéria pulmonar, vai aos pulmões e volta arterial para o átrio esquerdo, pelas veias pulmonares, passando para o ventrículo esquerdo, e saindo pela aorta, para todo o corpo;
(C) o sangue arterial sai do ventrículo direito, vai aos pulmões pela aorta, volta arterializado para o átrio esquerdo e daí, passando para o ventrículo esquerdo, vai para todo corpo pela artéria pulmonar;
(D) o sangue venoso sai do ventrículo direito pela veia pulmonar, vai aos pulmões e volta arterializado pelas artérias pulmonares para o átrio esquerdo, passando para o ventrículo esquerdo, saindo pela aorta para todo o corpo;
(E) não obedece a nenhuma dessas descrições, apresentando um movimento muito mais complicado que os descritos acima.
37. Observe os esquemas \mathbf{A} e \mathbf{B}, que mostram de modo simplificado o sentido da corrente circulatória em diversos grupos de animais que apresentam sistema circulatório:

Assinale a alternativa correta:
(A) A é fechado, presente em artrópodes em geral e cefalópodes; B é aberto, encontrado em nematelmintos e répteis.
(B) A é aberto, presente em crustáceos e moluscos em geral; \mathbf{B} é fechado, encontrado em vertebrados.
(C) A é fechado, presente em anelídeos; B é fechado, encontrado em mamíferos.
(D) A é aberto, presente em planária; \mathbf{B} é fechado, encontrado em anfibios e peixes.
(E) Ambos são fechados, encontrados tanto em invertebrados como vertebrados.
38. Sobre a fisiologia do coração humano, são feitas três afirmativas:
I. 0 sangue é propulsionado através das válvulas tricúspide e mitral quando os átrios se contraem.
II. Com a sístole ventricular, o sangue é projetado para as artérias aorta (lado esquerdo) e pulmonar (lado direito).
III. As válvulas semilunares (pulmonar e aórtica) impedem o retorno sangứneo para os ventrículos.

Analise-as e assinale a opção que indica(s) afirmativa(s) correta(s):
(A) somente I;
(B) somente II;
(C) somente III;
(D) somente I e II;
(E) I, II e III.
39. Nos mamíferos, a circulação do sangue é fechada, dupla e completa. Isso significa que:

1. o sangue sempre flui no interior dos vasos;
2. em uma volta completa, o sangue passa duas vezes no coração;
3. em algum ponto do sistema circulatório, há mistura de sangues arterial e venoso;
4. os sangues arterial e venoso não se misturam.

Estão corretas apenas:
(A) 2 e 3 ;
(B) 1 e 3 ;
(C) 1,2 e 4 ;
(D) 1,3 e 4 ;
(E) 3 e 4 .
40. A partir dos capilares venosos, o sangue circula para:
(A) vênulas - veias - coração - artérias - arteríolas - capilares arteriais;
(B) capilares arteriais - arteríolas - artérias - coração - veias - vênulas;
(C) arteríolas - artérias - coração - veias - vênulas - capilares arteriais;
(D) coração - arteríolas - artérias - capilares arteriais - veias - vênulas;
(E) capilares arteriais - vênulas - arteríolas - veias - artérias - coração.

