Dever de Casa

Tecnologia:

GABARITO COMENTADO

QUÍMICA

1. Letra E .

2. Letra C .

$\begin{gathered} \mathrm{Ar} \\ 8 \mathrm{~A} \text { ou } 18 \\ \text { gás nobre } \end{gathered}$	Cr 6 ou 6 B Metal de Transição	Na 1 A ou 1 Metal alcalino	C 7 A ou 17 Halogênio	Sr 2 A ou 2 Metal Alcalino-terroso

3. Letra B.
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4} \rightarrow Z=16 \rightarrow S$, família $6 A$, íon S^{2-}.
4. Letra C.

Proporção de 1:3 $\rightarrow \mathrm{A} \ell \mathrm{X}_{3} \rightarrow \mathrm{~A} \ell^{3+}$ e $\mathrm{X}^{1-}($ (famíía 7 A$)$.
05. Letra E.
$\underline{\text { A }}$ apresenta propriedades químicas semelhantes às do oxigênio \rightarrow mesma família (6 A ou 16), $n \mathrm{p}^{4}$.
06. Letra B.

0 elemento $E_{1}(Z=11)$ tem menor raio atômico que 0 elemento E_{3}; logo, tem maior potencial de ionização que o elemento E_{3}.
07. Letra E
$[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{2} \rightarrow \mathrm{Z}=48 \rightarrow \mathrm{Cd}$
08. Letra E.

0 iodo é MENOS eletronegativo do que o cloro.
A energia de ionização do lítio é maior do que a do césio.
Oxigênio e enxofre estão situados na mesma família.
09. Letra C.

Dentre os átomos, $\underline{0}$ átomo IV tem a maior afinidade eletrônica.
10. Letra D.

Fósforo (P) e nitrogênio (N) são dafamília 5 A ou 15; portanto, possuem, na última camada, a configuração: $n \mathrm{~ns}^{2} \mathrm{np}^{3}$, ou seja:

11. Letra A.

Dentre os elementos químicos do 5° período da classificação periódica, 0 mais eletropositivo é o rubídio (Rb), família 1 A ou 1 .
12. Letra E .

Li (2 camadas) < Na (3 camadas) < K (4 camadas) < Rb (5 camadas) < Cs (6 camadas).
13. Letra D .

Num mesmo período, o raio atômico do halogênio é sempre MENOR que o do metal alcalino, por ter maior Z.
14. Letra E .

Elemento $\underline{\mathbf{X}}$, cujo número atômico é $12 \rightarrow$ Mg: familia 2 A ou 2 , forma íon X^{2+} Elemento \mathbf{Y}, situado na família 5 A ou $15 \rightarrow$ forma ion Y^{3+} $X^{2+} Y^{3+} \rightarrow X_{3} Y_{2}$
15. Letra C.
$\left.\left.E_{1}=>n=3 ; \ell=1 ; m=0 ; s=+1 / 2 .=>\ldots . .3 p^{5}=>{ }_{17}(\ell: 2) 8\right) 7\right)$
$\left.\mathrm{E}_{2}=>\mathrm{n}=2 ; \ell=1 ; \mathrm{m}=+1 ; \mathrm{s}=-1 / 2 .=>\ldots . .2 p^{3}=>{ }_{7} \mathrm{~N}: 2\right) 5$)
$E_{3}^{2}=>n=1 ; \ell=0 ; m=0 ; s=+1 / 2 .=>.1 s^{2}=>{ }_{2}$ He: 2)
$\left.\left.\left.E_{4}=>n=3 ; \ell=1 ; m=-1 ; s=-1 / 2 .=>. . . .3 p^{1}=>{ }_{13} A \ell: 2\right) 8\right) 3\right)$
Afirmativas II e V estão erradas. E_{3} é um gás nobre; portanto possui eletronegatividade nula e alto potencial de ionização.

