GLOBO ONLINE E D U C A Ç Ã O

Dever de Casa

Tecnologia:

QUÍMICA

16. Assinale a opção correta:

	Fórmulas	Número de ligações na molécula
(A)	$C\ell_{_2}\!0$	1 covalência simples e 1 covalência dativa
(B)	$\text{HC}\ell \textbf{0}_{_{4}}$	5 covalências simples
(C)	N_2O_3	2 covalências simples e 2 covalências dativas
(D)	I ₂ 0 ₅	2 covalências simples e 4 covalências dativas
(E)	$C\ell_2O_7$	4 covalências simples e 4 covalências dativas

17. Assinale a opção que contém a geometria molecular correta das espécies OF_a, SF_a, BF_a, NF_a e CF_a, todas no estado gasoso:

(A) Angular, linear, piramidal, piramidal e tetraédrica.

(B) Linear, linear, trigonal plana, piramidal e quadrado planar.

(C) Angular, angular, trigonal plana, piramidal e tetraédrica.

(D) Linear, angular, piramidal, trigonal plana e angular.

(E) Trigonal plana, linear, tetraédrica, piramidal e tetraédrica.

18. A alternativa que apresenta, respectivamente, exemplos de substâncias com ligação iônica, covalente polar, covalente apolar e metálica é:

(A)	AgC <i>l</i> , O ₂ , H ₂ , Fe ₂ O ₃	(D) BF ₃ , Br ₂ , HF, Mn
(B)	BeCℓ,, CO,, CH₄, Fe	(E) MgO, H ₂ O, I₂, Aℓ
	ດຈາດປັ່ນ ມັດຈະດີ ຣະດ	<u> </u>

(C) $Ca(OH)_2$, $HC\ell$, O_3 , SiC

19. Qual a fórmula provável do composto resultante da combinação do alumínio e um calcogênio **Y**?

(A)	AℓY	(D)	$A\ell_2Y_3$
(B)	$A\ell_2 Y$		$A\ell_3 Y_2$

- (C) $A\ell Y_2$
- 20. Correlacione:

I.	H_2^0	()	A	Ligação covalente polar e molécula apolar
II.	CsF	()	В	Ligação covalente apolar
III.	NI_3	()	C	Ligação iônica
IV.	CO ₂	()	D	Ligação covalente polar e molécula polar
V.	N ₂	()	Е	Pontes (ou ligação) de hidrogênio.

A melhor seqüência para I, II, III, IV e V é:

(A)	E, B, C, A, D	(D) A, E, C, D, B
(B)	E, C, D, A, B	(E) A, C, D, B, E
(C)	C, E, A, D, B	

21. Qual o número de oxidação correto do N, respectivamente, em todos os compostos apresentados a seguir?

	N ₂	HNO_3	N_2O	Ν	02	NH_3	NO	
(B)	0, +3, +2, 1, +6, -1, 0, +5, +1,	- 4, - 3, -	- 2				+4, - 3, +4, +3,	

22. Tomando por base o esquema de classificação periódica a seguir, onde os símbolos dos elementos foram substituídos por letras arbitrariamente escolhidas e onde T representa um gás nobre:

a fórmula **falsa** é:

(A)	ΧI	(D) QW ₃
(A)	L	(D) QVV ₃

 $(B) \quad Y W_2 \qquad (E) \ GR_4$

(C) $M_2 \overline{J}_3$

23. Os nomes dos ácidos oxigenados abaixo são, respectivamente:

```
HNQ_{3}, HC\ell O_{3}, H_{2}SO_{3}, H_{3}PO_{4}
```

- (A) ácido nitroso, ácido clórico, ácido sulfuroso, ácido fosfórico;
- (B) ácido nítrico, ácido clorídrico, ácido sulfúrico, ácido fosfórico;
- (C) ácido nítrico, ácido hipocloroso, ácido sulfuroso, ácido fosforoso;
- (D) ácido nitroso, ácido perclórico, ácido sulfúrico, ácido fosfórico;
- (E) ácido nítrico, ácido cloroso, ácido sulfúrico, ácido hipofosforoso.

24. Assinale a opção onde todas as moléculas são apolares:

(A)	$H_2, H_2O, CC\ell_4$	(D) 0 ₂ , SO ₂ , N ₂
	SÕ ₃ , ČO ₂ , H ₂ Ö	(E) H_2 , $CC\ell_4$, SO_3
(C)	$NH_3, CO_2, CC\ell_4$	

25. Da combinação química entre átomos **X** com configuração de valência ns² e átomos **Y** com configuração de valência ns²np⁴ resultam compostos químicos ______ com fórmula genérica _____.

À alternativa que completa corretamente esta afirmação é:

- (A) covalentes; XY₂; (D)iônicos; XY₂;
 - covalentes; XY_{i}^{2} (E) iônicos; $X_{a}Y_{.}(E)$
- (C) iônicos; XY;

(B)

26. Na tabela abaixo, a coluna da esquerda contém tipos de ligações entre íons ou moléculas no estado sólido. A coluna da direita contém fórmulas de algumas substâncias (a serem consideradas no estado sólido).

	Ligação	Substâncias	
1	lônica	H ₂ O	5
2	Ligação de Hidrogênio	CsF	6
3	De Van der Waals	CH4	7
4	Polar	SO2	8

Somente uma das alternativas contém associações corretas entre os termos das duas colunas. Assinale-a:

(A)	1 – 5; 2 – 7; 3 – 8; 4 – 6	(D) 1 − 6; 2 − 7; 3 − 5; 4 − 8
(B)	1 – 6; 2 – 5; 3 – 7; 4 – 8	(E) 1 – 8; 2 – 7; 3 – 6; 4 – 5
(C)	1 – 8; 2 – 5; 3 – 8; 4 – 7	

27. Se o cloro pode apresentar números de oxidação entre -1 e +7, a alternativa que apresenta moléculas com as duas fórmulas incorretas é:

28. Um dos testes realizados para a determinação da quantidade de álcool na gasolina é aquele em que se adiciona água a ela, ocasionando a extração do álcool pela água. Isso pode ser explicado pelo fato de álcool (CH₃CH₂OH) e água possuírem:

ligações covalentes simples e dativas; (A)

- forças de atração por pontes(ou ligações) de hidrogênio; forças de atração por forças de Van der Waals; (B)
- (C) (D) ligações iônicas;

ÌΕ) moléculas apolares.

29. O esquema a seguir representa os elétrons de valência de 3 elementos:

Os compostos AC, A2B e C2B são, respectivamente:

- iônico, iônico e iônico; (A)
- (D) molecular, molecular e iônico (E) molecular, molecular e molecular.
- (B) (C) iônico, iônico e molecular; iônico, molecular e molecular;
- 30. O ácido de fórmula HBrO denomina-se:

(A)	ácido bromídrico;	(D) ácido bromoso;
-----	-------------------	--------------------

- ácido brômico; (B)
- (C) ácido hipobromoso;
- (E) ácido perbrômico.