

QUÍMICA

16. Assinale a opção correta:

	Fórmulas	Número de ligações na molécula
(A)	$\mathrm{C}_{2} \mathrm{O}$	1 covalência simples e 1 covalência dativa
(B)	$\mathrm{HC} \ell \mathrm{O}_{4}$	5 covalências simples
(C)	$\mathrm{N}_{2} \mathrm{O}_{3}$	2 covalências simples e 2 covalências dativas
(D)	$\mathrm{I}_{2} \mathrm{O}_{5}$	2 covalências simples e 4 covalências dativas
(E)	$\mathrm{C}_{2} \mathrm{O}_{7}$	4 covalências simples e 4 covalências dativas

17. Assinale a opção que contém a geometria molecular correta das espécies $\mathrm{OF}_{2}, \mathrm{SF}_{2}, \mathrm{BF}_{3}, \mathrm{NF}_{3}$ e CF_{4}, todas no estado gasoso:
(A) Angular, linear, piramidal, piramidal e tetraédrica.
(B) Linear, linear, trigonal plana, piramidal e quadrado planar.
(C) Angular, angular, trigonal plana, piramidal e tetraédrica.
(D) Linear, angular, piramidal, trigonal plana e angular.
(E) Trigonal plana, linear, tetraédrica, piramidal e tetraédrica.
18. A alternativa que apresenta, respectivamente, exemplos de substâncias com ligação iônica, covalente polar, covalente apolar e metálica é:
(A) $\mathrm{AgCl}, \mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{Fe}_{2} \mathrm{O}_{3}$
(D) $\mathrm{BF}_{3}, \mathrm{Br}_{2}, \mathrm{HF}, \mathrm{Mn}$
(B) $\mathrm{BeC} \ell_{2}, \mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{Fe}$
(E) $\mathrm{MgO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{I}_{2}, \mathrm{~A} \ell$
(C) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{HCl}, \mathrm{O}_{3}, \mathrm{SiC}$
19. Qual a fórmula provável do composto resultante da combinação do alumínio e um calcogênio Y ?
(A) $\mathrm{A} \ell \mathrm{Y}$
(D) $\mathrm{Al}_{2} \mathrm{Y}_{3}$
(B) $\mathrm{A} \ell_{2} \mathrm{Y}$
(E) $\mathrm{Al}_{3}{ }_{3} \mathrm{Y}_{2}$
(C) $A \ell Y_{2}$
20. Correlacione:

I.	$\mathrm{H}_{2} \mathrm{O}$	()	A	Ligação covalente polar e molécula apolar
II.	CSF	()	B	Ligação covalente apolar
III.	NI_{3}	()	C	Ligação iônica
IV.	CO_{2}	()	D	Ligação covalente polar e molécula polar
V.	N_{2}	()	E	Pontes (ou ligação) de hidrogênio.

A melhor sequuência para I , II , III , IV e V é:
(A) E, B, C, A, D
(D) A, E, C, D, B
(B) E, C, D, A, B
(E) A, C, D, B, E
(C) $\mathrm{C}, \mathrm{E}, \mathrm{A}, \mathrm{D}, \mathrm{B}$
21. Qual o número de oxidação correto do N , respectivamente, em todos os compostos apresentados a seguir?

$$
\begin{array}{llllll}
\mathrm{N}_{2} & \mathrm{HNO}_{3} & \mathrm{~N}_{2} \mathrm{O} & \mathrm{NO}_{2} & \mathrm{NH}_{3} & \mathrm{NO}
\end{array}
$$

(A) $0,+3,+2,+2,+3,-2$
(D) $1,+5,+1,+4,-3,+2$
(B) $1,+6,-1,-4,-3,-2$
(E) $0,+5,-1,+4,+3,+2$
(C) $0,+5,+1,+4,-3,+2$
22. Tomando por base o esquema de classificação periódica a seguir, onde os símbolos dos elementos foram substituídos por letras arbitrariamente escolhidas e onde T representa um gás nobre:

a fórmula falsa é:
(A) $\quad X, L$
(D) QW_{3}
(B) YW_{2}
(E) GR_{4}
(C) $\mathrm{M}_{2} \mathrm{~J}_{3}$
23. Os nomes dos ácidos oxigenados abaixo são,respectivamente:

$$
\mathrm{HNO}_{2}, \mathrm{HC} \ell \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}
$$

(A) ácido nitroso, ácido clórico, ácido sulfuroso, ácido fosfórico;
(B) ácido nítrico, ácido clorídrico, ácido sulfúrico, ácido fosfórico;
(C) ácido nítrico, ácido hipocloroso, ácido sulfuroso, ácido fosforoso;
(D) ácido nitroso, ácido perclórico, ácido sulfúrico, ácido fosfórico;
(E) ácido nítrico, ácido cloroso, ácido sulfúrico, ácido hipofosforoso.
24. Assinale a opção onde todas as moléculas são apolares:
(A) $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CC} \ell_{4}$
(D) $\mathrm{O}_{2}, \mathrm{SO}_{2}, \mathrm{~N}_{2}$
(B) $\mathrm{SO}_{3}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
(E) $\mathrm{H}_{2}, \mathrm{CC}_{4}, \mathrm{SO}_{3}$
(C) $\mathrm{NH}_{3}, \mathrm{CO}_{2}, \mathrm{CC}_{4}$
25. Da combinação química entre átomos \mathbf{X} com configuração de valência $n s^{2}$ e átomos \mathbf{Y} com configuração de valência $n^{2} n p^{4}$ resultam compostos químicos \qquad com fórmula genérica \qquad _.
A alternativa que completa corretamente esta afirmação é:
(A) covalentes; XY_{2};
(D)iônicos; XY;
(B) covalentes; XY ;
(E)iônicos; X_{2}^{2}.(E)
26. Na tabela abaixo, a coluna da esquerda contém tipos de ligações entre íns ou moléculas no estado sólido. A coluna da direita contém fórmulas de algumas substâncias (a serem consideradas no estado sólido).

	Ligação	Substâncias	
1	lônica	$\mathrm{H}_{2} \mathrm{O}$	5
2	Ligação de Hidrogênio	CsF	6
3	De Van der Waals	CH_{4}	7
4	Polar	SO_{2}	8

Somente uma das alternativas contém associações corretas entre os termos das duas colunas. Assinale-a:
(A) $1-5 ; 2-7 ; 3-8 ; 4-6$
(D) 1-6;2-7; 3-5;4-8
(B) $1-6 ; 2-5 ; 3-7 ; 4-8$
(E) $1-8 ; 2-7 ; 3-6 ; 4-5$
(C) $1-8 ; 2-5 ; 3-8 ; 4-7$
27. Se 0 cloro pode apresentar números de oxidação entre -1 e +7 , a alternativa que apresenta moléculas com as duas fórmulas incorretas é:
28. Um dos testes realizados para a determinação da quantidade de álcool na gasolina é aquele em que se adiciona água a e ela, ocasionando a extração do álcool pela água. Isso pode ser explicado pelo fato de álcool ($\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$) e água possuírem:
(A) ligações covalentes simples e dativas;
(B) forças de atração por pontes(ou ligações) de hidrogênio;
(C) forças de atração por forças de Van der Waals;
(D) ligações iônicas;
(E) moléculas apolares.
29. 0 esquema a seguir representa os elétrons de valência de 3 elementos:

	$3 s$	$3 p_{x}$	$3 p_{y}$	$3 p_{z}$
A	\uparrow			

	3 s	$3 \mathrm{p}_{\mathrm{x}}$	$3 \mathrm{p}_{\mathrm{y}}$	$3 \mathrm{p}_{\mathrm{z}}$
C	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow

Os compostos $A C, A_{2} B$ e $C_{2} B$ são, respectivamente:
(A) iônico, iônico e iônico;
(D) molecular, molecular e iônico
(B) iônico, iônico e molecular;
(E) molecular,molecular e molecular.
(C) iônico, molecular e molecular;
30. O ácido de fórmula HBrO denomina-se:
(A) ácido bromídrico;
(D) ácido bromoso;
(B) ácido brômico;
(E) ácido perbrômico.
(C) ácido hipobromoso;

