

Aula Extra

GABARITO

QUÍMICA

01

(A)
$$^{238}_{92}U \xrightarrow{\frac{4}{2}\alpha} ^{\frac{1}{2}\beta} \rightarrow ^{222}_{86}Rn$$

U = 238 para 222 \longrightarrow 16 unidades; logo: $4\frac{4}{2}\alpha$

U = 92
$$\longrightarrow$$
 4 $\alpha \longrightarrow$ 84

84 para 86 \longrightarrow 2 β .

(B)
$$N \xrightarrow{3,8d} \frac{N}{2} \xrightarrow{3,8d} \frac{N}{4} \xrightarrow{3,8d} \frac{N}{8} \xrightarrow{3,8d} \frac{N}{16}$$

 $4MV = 3.8 \times 4 = 15.2 \text{ dias}$

(B) Neutro: 4H⁺ = 4 OH⁻

03

(A)
$$Kc = \begin{bmatrix} \frac{1}{CO} \\ \frac{1}{Ni} \end{bmatrix}$$

(B) Quando $\begin{bmatrix} c \\ c \end{bmatrix} = \begin{bmatrix} c \\ Ni \end{bmatrix} = 1,0 \text{mol/L}$

$$Qc = \frac{\begin{bmatrix} c \\ Co \end{bmatrix}}{\begin{bmatrix} c \\ Ni \end{bmatrix}} = 1 < Kc$$

Portanto, a reação irá caminhar para a direita:

$$\begin{bmatrix} \dot{\mathsf{Co}} \end{bmatrix} \uparrow \begin{bmatrix} \dot{\mathsf{Ni}} \end{bmatrix} \downarrow$$

Anodo {
$$Co - 2e^- \longrightarrow Co^{++}$$

Catodo $\{Ni^{++} + 2e^{-} \longrightarrow Ni \}$

Pólo positivo ------ Ni

(C) A pilha deixará de funcionar quando a reação atingir o equilíbrio, ou seja, quando a razão entre as concentrações de Co e Ni se igualar à Kc:

$$\begin{bmatrix} \dot{Co} \\ \dot{Ni} \end{bmatrix} = Kc = 10$$

04

1mol $SO_4^- \longrightarrow 96g$ 5 x 10^{-3} mol \longrightarrow x

x = 0.48g/L

$$0,48g \longrightarrow y$$

y = 480mg/L -> está acima.

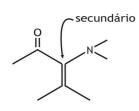
Logo, está inadequada para consumo humano.

(B) Kps CaSO₄ = 2.6×10^{-5}

$$VMP = 0.25g/L$$

$$x = 2.6 \times 10^{-3} \text{mol } SO_4^{-} / L$$

Kps =
$$[Ca^{++}] \times [SO_4^-]$$
 2,6 x 10⁻⁵ = $[Ca^{++}] \times 2,6 \times 10^{-3}$


$$[Ca^{++}] = 10^{-2} \text{mol/L}$$

05 (A)

Ácido 2-aminobutanóico GLICINA Zwitterion

(B) Diminuição do pH (aumento de [H+]), ocorre a protonação do Zwitterion.

06 (A)

(B) 200mL de café solúvel ____ 97mg cafeína

$$9.7 \times 10^{-2} g$$

194g \longrightarrow 1mol molecular 9,7 x 10^{-2} g \longrightarrow x

 $x = 5 \times 10^{-4}$ mol molec.

07

(A)
$$C_2H_6O + 3 O_2 \longrightarrow 2 CO_2 + 3 H_2O$$

 $C_6H_{12}O_6 \longrightarrow 2 C_2H_6O + 2 CO_2$

(B) Destilação fracionada

(A) Geométrica, Cadeia e Posição.

(A) (B)

$$\begin{array}{ccc} \mathsf{CH_3} - \mathsf{CH_2} & \mathsf{CH_2} - \mathsf{CH_3} \\ & & / \\ & \mathsf{C} = \mathsf{C} \\ & / \\ & \mathsf{CH_3} & \mathsf{CH_3} \end{array}$$

09

2,3-pentadieno dextrógiro e 2,3-pentadieno levógiro.

10

(B) Durante a fusão, ocorrem quebras de ligações intermoleculares (ponte de hidrogênio).

O PF do maleico (cis) é menor, pois parte das ligações de hidrogênio são intermoleculares:

$$\begin{array}{c} O \\ H \\ C \\ C \\ O \\ O \\ O \\ O \\ O \\ O \\ H \end{array}$$

Além disso, o ácido fumárico (trans) pode formar trímeros, tetrâmeros, entre outros, ou seja, estruturas maiores, ao passo que o ácido maleico só pode formar <u>dímeros</u>.

(A)

$$\mathbf{H} - \mathbf{C}$$

$$\mathbf{CH_3} - \mathbf{CH_2} - \mathbf{OH}$$
 ácido metanóico etanol

(B) $H_3C - O - CH_3$ (éter)

metoxi-metano

Mesma massa molar que o álcool: as forças intermoleculares no éter (dipolo-dipolo) são menos intensas que as do álcool (pontes de hidrogênio).

12

(A) 0,1mol NaOH
$$\longrightarrow$$
 1000mL sol. $x \longrightarrow$ 62,4mL

$$x = 6,24 \times 10^{-3} \text{mol NaOH}$$

Sendo um monoácido: (1 : 1) quantidade: a mesma

6,24 x
$$10^{-3}$$
mol ácido \longrightarrow 0,550g ácido 1 mol \longrightarrow x

x = 88,14g/mol

(B)
$$(C_2H_4O)n = 88$$
 $(24 + 4 + 16)n = 88$ $n = 2$

Logo: C₄H₈O₂

- (A) ácido 4-aminopentanóico; (B) 6-hidroxi 3-heptanona; (C) 3-amino 1-pentanol; (D) 1-amino 3-metoxi ciclobutano.

- (A) A = fenol, ácido carboxílico; B = DH e fenol.
- $\begin{array}{ll} \text{(B)} & \text{I} \text{n\~ap apresenta;} \\ & \text{II} \text{apresenta;} \\ & \text{III} \text{n\~ao apresenta.} \end{array}$
- 15 $N = 2^n$ $N = 2^2$ N = 4 isômeros.